ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02256
27
17

Knowledge Transfer Pre-training

7 June 2015
Zhiyuan Tang
Dong Wang
Yiqiao Pan
Zhiyong Zhang
ArXivPDFHTML
Abstract

Pre-training is crucial for learning deep neural networks. Most of existing pre-training methods train simple models (e.g., restricted Boltzmann machines) and then stack them layer by layer to form the deep structure. This layer-wise pre-training has found strong theoretical foundation and broad empirical support. However, it is not easy to employ such method to pre-train models without a clear multi-layer structure,e.g., recurrent neural networks (RNNs). This paper presents a new pre-training approach based on knowledge transfer learning. In contrast to the layer-wise approach which trains model components incrementally, the new approach trains the entire model as a whole but with an easier objective function. This is achieved by utilizing soft targets produced by a prior trained model (teacher model). Compared to the conventional layer-wise methods, this new method does not care about the model structure, so can be used to pre-train very complex models. Experiments on a speech recognition task demonstrated that with this approach, complex RNNs can be well trained with a weaker deep neural network (DNN) model. Furthermore, the new method can be combined with conventional layer-wise pre-training to deliver additional gains.

View on arXiv
Comments on this paper