22
28

Towards Faster Rates and Oracle Property for Low-Rank Matrix Estimation

Huan Gui
Quanquan Gu
Abstract

We present a unified framework for low-rank matrix estimation with nonconvex penalties. We first prove that the proposed estimator attains a faster statistical rate than the traditional low-rank matrix estimator with nuclear norm penalty. Moreover, we rigorously show that under a certain condition on the magnitude of the nonzero singular values, the proposed estimator enjoys oracle property (i.e., exactly recovers the true rank of the matrix), besides attaining a faster rate. As far as we know, this is the first work that establishes the theory of low-rank matrix estimation with nonconvex penalties, confirming the advantages of nonconvex penalties for matrix completion. Numerical experiments on both synthetic and real world datasets corroborate our theory.

View on arXiv
Comments on this paper