ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.07468
9
5

Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood

28 April 2015
Xin Yuan
Ricardo Henao
E. Tsalik
R. Langley
Lawrence Carin
ArXivPDFHTML
Abstract

We consider the problem of discriminative factor analysis for data that are in general non-Gaussian. A Bayesian model based on the ranks of the data is proposed. We first introduce a new {\em max-margin} version of the rank-likelihood. A discriminative factor model is then developed, integrating the max-margin rank-likelihood and (linear) Bayesian support vector machines, which are also built on the max-margin principle. The discriminative factor model is further extended to the {\em nonlinear} case through mixtures of local linear classifiers, via Dirichlet processes. Fully local conjugacy of the model yields efficient inference with both Markov Chain Monte Carlo and variational Bayes approaches. Extensive experiments on benchmark and real data demonstrate superior performance of the proposed model and its potential for applications in computational biology.

View on arXiv
Comments on this paper