ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.06650
37
43

Learning Dictionaries for Named Entity Recognition using Minimal Supervision

24 April 2015
Arvind Neelakantan
Michael Collins
ArXivPDFHTML
Abstract

This paper describes an approach for automatic construction of dictionaries for Named Entity Recognition (NER) using large amounts of unlabeled data and a few seed examples. We use Canonical Correlation Analysis (CCA) to obtain lower dimensional embeddings (representations) for candidate phrases and classify these phrases using a small number of labeled examples. Our method achieves 16.5% and 11.3% F-1 score improvement over co-training on disease and virus NER respectively. We also show that by adding candidate phrase embeddings as features in a sequence tagger gives better performance compared to using word embeddings.

View on arXiv
Comments on this paper