ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.08843
24
11

Globally Tuned Cascade Pose Regression via Back Propagation with Application in 2D Face Pose Estimation and Heart Segmentation in 3D CT Images

30 March 2015
Peng Sun
J. Min
G. Xiong
    MedIm
    CVBM
ArXivPDFHTML
Abstract

Recently, a successful pose estimation algorithm, called Cascade Pose Regression (CPR), was proposed in the literature. Trained over Pose Index Feature, CPR is a regressor ensemble that is similar to Boosting. In this paper we show how CPR can be represented as a Neural Network. Specifically, we adopt a Graph Transformer Network (GTN) representation and accordingly train CPR with Back Propagation (BP) that permits globally tuning. In contrast, previous CPR literature only took a layer wise training without any post fine tuning. We empirically show that global training with BP outperforms layer-wise (pre-)training. Our CPR-GTN adopts a Multi Layer Percetron as the regressor, which utilized sparse connection to learn local image feature representation. We tested the proposed CPR-GTN on 2D face pose estimation problem as in previous CPR literature. Besides, we also investigated the possibility of extending CPR-GTN to 3D pose estimation by doing experiments using 3D Computed Tomography dataset for heart segmentation.

View on arXiv
Comments on this paper