ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.05298
24
16

Distributed on-line multidimensional scaling for self-localization in wireless sensor networks

18 March 2015
Gemma Morral
Pascal Bianchi
ArXivPDFHTML
Abstract

The present work considers the localization problem in wireless sensor networks formed by fixed nodes. Each node seeks to estimate its own position based on noisy measurements of the relative distance to other nodes. In a centralized batch mode, positions can be retrieved (up to a rigid transformation) by applying Principal Component Analysis (PCA) on a so-called similarity matrix built from the relative distances. In this paper, we propose a distributed on-line algorithm allowing each node to estimate its own position based on limited exchange of information in the network. Our framework encompasses the case of sporadic measurements and random link failures. We prove the consistency of our algorithm in the case of fixed sensors. Finally, we provide numerical and experimental results from both simulated and real data. Simulations issued to real data are conducted on a wireless sensor network testbed.

View on arXiv
Comments on this paper