46
39

Matrix Product State for Feature Extraction of Higher-Order Tensors

Abstract

This paper introduces matrix product state (MPS) decomposition as a computational tool for extracting features of multidimensional data represented by higher-order tensors. Regardless of tensor order, MPS extracts its relevant features to the so-called core tensor of maximum order three which can be used for classification. Mainly based on a successive sequence of singular value decompositions (SVD), MPS is quite simple to implement without any recursive procedure needed for optimizing local tensors. Thus, it leads to substantial computational savings compared to other tensor feature extraction methods such as higher-order orthogonal iteration (HOOI) underlying the Tucker decomposition (TD). Benchmark results show that MPS can reduce significantly the feature space of data while achieving better classification performance compared to HOOI.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.