ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.04983
27
0

Context Tricks for Cheap Semantic Segmentation

17 February 2015
Thanapong Intharah
Gabriel J. Brostow
    VLM
ArXivPDFHTML
Abstract

Accurate semantic labeling of image pixels is difficult because intra-class variability is often greater than inter-class variability. In turn, fast semantic segmentation is hard because accurate models are usually too complicated to also run quickly at test-time. Our experience with building and running semantic segmentation systems has also shown a reasonably obvious bottleneck on model complexity, imposed by small training datasets. We therefore propose two simple complementary strategies that leverage context to give better semantic segmentation, while scaling up or down to train on different-sized datasets. As easy modifications for existing semantic segmentation algorithms, we introduce Decorrelated Semantic Texton Forests, and the Context Sensitive Image Level Prior. The proposed modifications are tested using a Semantic Texton Forest (STF) system, and the modifications are validated on two standard benchmark datasets, MSRC-21 and PascalVOC-2010. In Python based comparisons, our system is insignificantly slower than STF at test-time, yet produces superior semantic segmentations overall, with just push-button training.

View on arXiv
Comments on this paper