ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03163
21
3

Gaussian Process Models for HRTF based Sound-Source Localization and Active-Learning

11 February 2015
Yuancheng Luo
D. Zotkin
R. Duraiswami
    GP
ArXivPDFHTML
Abstract

From a machine learning perspective, the human ability localize sounds can be modeled as a non-parametric and non-linear regression problem between binaural spectral features of sound received at the ears (input) and their sound-source directions (output). The input features can be summarized in terms of the individual's head-related transfer functions (HRTFs) which measure the spectral response between the listener's eardrum and an external point in 333D. Based on these viewpoints, two related problems are considered: how can one achieve an optimal sampling of measurements for training sound-source localization (SSL) models, and how can SSL models be used to infer the subject's HRTFs in listening tests. First, we develop a class of binaural SSL models based on Gaussian process regression and solve a \emph{forward selection} problem that finds a subset of input-output samples that best generalize to all SSL directions. Second, we use an \emph{active-learning} approach that updates an online SSL model for inferring the subject's SSL errors via headphones and a graphical user interface. Experiments show that only a small fraction of HRTFs are required for 5∘5^{\circ}5∘ localization accuracy and that the learned HRTFs are localized closer to their intended directions than non-individualized HRTFs.

View on arXiv
Comments on this paper