ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.01368
22
9

Sparse Representation Classification Beyond L1 Minimization and the Subspace Assumption

4 February 2015
Cencheng Shen
Li-Wei Chen
Yuexiao Dong
Carey E. Priebe
    BDL
ArXivPDFHTML
Abstract

The sparse representation classifier (SRC) has been utilized in various classification problems, which makes use of L1 minimization and works well for image recognition satisfying a subspace assumption. In this paper we propose a new implementation of SRC via screening, establish its equivalence to the original SRC under regularity conditions, and prove its classification consistency under a latent subspace model and contamination. The results are demonstrated via simulations and real data experiments, where the new algorithm achieves comparable numerical performance and significantly faster.

View on arXiv
Comments on this paper