ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.00115
34
5

Optimized Projection for Sparse Representation Based Classification

31 January 2015
Canyi Lu
De-Shuang Huang
    CVBM
ArXiv (abs)PDFHTML
Abstract

Dimensionality reduction (DR) methods have been commonly used as a principled way to understand the high-dimensional data such as facial images. In this paper, we propose a new supervised DR method called Optimized Projection for Sparse Representation based Classification (OP-SRC), which is based on the recent face recognition method, Sparse Representation based Classification (SRC). SRC seeks a sparse linear combination on all the training data for a given query image, and make the decision by the minimal reconstruction residual. OP-SRC is designed on the decision rule of SRC, it aims to reduce the within-class reconstruction residual and simultaneously increase the between-class reconstruction residual on the training data. The projections are optimized and match well with the mechanism of SRC. Therefore, SRC performs well in the OP-SRC transformed space. The feasibility and effectiveness of the proposed method is verified on the Yale, ORL and UMIST databases with promising results.

View on arXiv
Comments on this paper