ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.07645
23
25

Hyper-parameter optimization of Deep Convolutional Networks for object recognition

30 January 2015
S. Talathi
ArXivPDFHTML
Abstract

Recently sequential model based optimization (SMBO) has emerged as a promising hyper-parameter optimization strategy in machine learning. In this work, we investigate SMBO to identify architecture hyper-parameters of deep convolution networks (DCNs) object recognition. We propose a simple SMBO strategy that starts from a set of random initial DCN architectures to generate new architectures, which on training perform well on a given dataset. Using the proposed SMBO strategy we are able to identify a number of DCN architectures that produce results that are comparable to state-of-the-art results on object recognition benchmarks.

View on arXiv
Comments on this paper