ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.01181
47
4
v1v2 (latest)

Object localization in ImageNet by looking out of the window

6 January 2015
A. Vezhnevets
V. Ferrari
    SSeg
ArXiv (abs)PDFHTML
Abstract

We propose a method for annotating the location of objects in ImageNet. Traditionally, this is cast as an image window classification problem, where each window is considered independently and scored based on its appearance alone. Instead, we propose a method which scores each candidate window in the context of all other windows in the image, taking into account their similarity in appearance space as well as their spatial relations in the image plane. We devise a fast and exact procedure to optimize our scoring function over all candidate windows in an image, and we learn its parameters using structured output regression. We demonstrate on 92000 images from ImageNet that this significantly improves localization over recent techniques that score windows in isolation.

View on arXiv
Comments on this paper