ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.00442
61
11
v1v2 (latest)

Joint rank and variable selection for parsimonious estimation in a high-dimensional finite mixture regression model

2 January 2015
Emilie Devijver
ArXiv (abs)PDFHTML
Abstract

We study a dimensionality reduction technique for finite mixtures of high-dimensional multivariate response regression models. Both the dimension of the response and the number of predictors are allowed to exceed the sample size. We consider predictor selection and rank reduction to obtain lower-dimensional approximations. A class of estimators with a fast rate of convergence is introduced. We apply this result to a specific procedure, introduced in [11], where the relevant predictors are selected by the Group-Lasso.

View on arXiv
Comments on this paper