21
123

Robust Matrix Completion

Abstract

This paper considers the problem of recovery of a low-rank matrix in the situation when most of its entries are not observed and a fraction of observed entries are corrupted. The observations are noisy realizations of the sum of a low rank matrix, which we wish to recover, with a second matrix having a complementary sparse structure such as element-wise or column-wise sparsity. We analyze a class of estimators obtained by solving a constrained convex optimization problem that combines the nuclear norm and a convex relaxation for a sparse constraint. Our results are obtained for the simultaneous presence of random and deterministic patterns in the sampling scheme. We provide guarantees for recovery of low-rank and sparse components from partial and corrupted observations in the presence of noise and show that the obtained rates of convergence are minimax optimal.

View on arXiv
Comments on this paper