ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.7144
30
313

Fully Convolutional Multi-Class Multiple Instance Learning

22 December 2014
Deepak Pathak
Evan Shelhamer
Jonathan Long
Trevor Darrell
    SSL
ArXivPDFHTML
Abstract

Multiple instance learning (MIL) can reduce the need for costly annotation in tasks such as semantic segmentation by weakening the required degree of supervision. We propose a novel MIL formulation of multi-class semantic segmentation learning by a fully convolutional network. In this setting, we seek to learn a semantic segmentation model from just weak image-level labels. The model is trained end-to-end to jointly optimize the representation while disambiguating the pixel-image label assignment. Fully convolutional training accepts inputs of any size, does not need object proposal pre-processing, and offers a pixelwise loss map for selecting latent instances. Our multi-class MIL loss exploits the further supervision given by images with multiple labels. We evaluate this approach through preliminary experiments on the PASCAL VOC segmentation challenge.

View on arXiv
Comments on this paper