ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.4912
19
6

Statistical Inference for Oscillation Processes

16 December 2014
R. Dahlhaus
T. Dumont
Sylvain Le Corff
Jan C. Neddermeyer
ArXivPDFHTML
Abstract

A new model for time series with a specific oscillation pattern is proposed. The model consists of a hidden phase process controlling the speed of polling and a nonparametric curve characterizing the pattern, leading together to a generalized state space model. Identifiability of the model is proved and a method for statistical inference based on a particle smoother and a nonparametric EM algorithm is developed. In particular, the oscillation pattern and the unobserved phase process are estimated. The proposed algorithms are computationally efficient and their performance is assessed through simulations and an application to human electrocardiogram recordings.

View on arXiv
Comments on this paper