37
21

Metric recovery from directed unweighted graphs

Tatsunori B. Hashimoto
Yi Sun
Tommi Jaakkola
Abstract

We analyze directed, unweighted graphs obtained from xiRdx_i\in \mathbb{R}^d by connecting vertex ii to jj iff xixj<ϵ(xi)|x_i - x_j| < \epsilon(x_i). Examples of such graphs include kk-nearest neighbor graphs, where ϵ(xi)\epsilon(x_i) varies from point to point, and, arguably, many real world graphs such as co-purchasing graphs. We ask whether we can recover the underlying Euclidean metric ϵ(xi)\epsilon(x_i) and the associated density p(xi)p(x_i) given only the directed graph and dd. We show that consistent recovery is possible up to isometric scaling when the vertex degree is at least ω(n2/(2+d)log(n)d/(d+2))\omega(n^{2/(2+d)}\log(n)^{d/(d+2)}). Our estimator is based on a careful characterization of a random walk over the directed graph and the associated continuum limit. As an algorithm, it resembles the PageRank centrality metric. We demonstrate empirically that the estimator performs well on simulated examples as well as on real-world co-purchasing graphs even with a small number of points and degree scaling as low as log(n)\log(n).

View on arXiv
Comments on this paper