ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.5404
39
96

Stochastic Block Transition Models for Dynamic Networks

19 November 2014
Kevin S. Xu
ArXivPDFHTML
Abstract

There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly influence future edge probabilities while retaining the interpretability of the SBM. I derive an approximate inference procedure for the SBTM and demonstrate that it is significantly better at reproducing durations of edges in real social network data.

View on arXiv
Comments on this paper