In recent years, Bayesian nonparametric statistics has gathered extraordinary attention. Nonetheless, a relatively little amount of work has been expended on Bayesian nonparametric hypothesis testing. In this paper, a novel Bayesian nonparametric approach to the two-sample problem is established. Precisely, given two samples and , with and being unknown continuous cumulative distribution functions, we wish to test the null hypothesis . The method is based on the Kolmogorov distance and approximate samples from the Dirichlet process centered at the standard normal distribution and a concentration parameter 1. It is demonstrated that the proposed test is robust with respect to any prior specification of the Dirichlet process. A power comparison with several well-known tests is incorporated. In particular, the proposed test dominates the standard Kolmogorov-Smirnov test in all the cases examined in the paper.
View on arXiv