34
2

Proof Supplement - Learning Sparse Causal Models is not NP-hard (UAI2013)

Abstract

This article contains detailed proofs and additional examples related to the UAI-2013 submission `Learning Sparse Causal Models is not NP-hard'. It describes the FCI+ algorithm: a method for sound and complete causal model discovery in the presence of latent confounders and/or selection bias, that has worst case polynomial complexity of order N2(k+1)N^{2(k+1)} in the number of independence tests, for sparse graphs over NN nodes, bounded by node degree kk. The algorithm is an adaptation of the well-known FCI algorithm by (Spirtes et al., 2000) that is also sound and complete, but has worst case complexity exponential in NN.

View on arXiv
Comments on this paper