ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.0606
47
75

clustvarsel: A Package Implementing Variable Selection for Model-based Clustering in R

3 November 2014
Luca Scrucca
A. Raftery
ArXivPDFHTML
Abstract

Finite mixture modelling provides a framework for cluster analysis based on parsimonious Gaussian mixture models. Variable or feature selection is of particular importance in situations where only a subset of the available variables provide clustering information. This enables the selection of a more parsimonious model, yielding more efficient estimates, a clearer interpretation and, often, improved clustering partitions. This paper describes the R package clustvarsel which performs subset selection for model-based clustering. An improved version of the methodology of Raftery and Dean (2006) is implemented in the new version 2 of the package to find the (locally) optimal subset of variables with group/cluster information in a dataset. Search over the solution space is performed using either a stepwise greedy search or a headlong algorithm. Adjustments for speeding up these algorithms are discussed, as well as a parallel implementation of the stepwise search. Usage of the package is presented through the discussion of several data examples.

View on arXiv
Comments on this paper