241
128

A Partially Linear Framework for Massive Heterogeneous Data

Abstract

We consider a partially linear framework for modelling massive heterogeneous data. The major goal is to extract common features across all sub-populations while exploring heterogeneity of each sub-population. In particular, we propose an aggregation type estimator for the commonality parameter that possesses the (non-asymptotic) minimax optimal bound and asymptotic distribution as if there were no heterogeneity. This oracular result holds when the number of sub-populations does not grow too fast. A plug-in estimator for the heterogeneity parameter is further constructed, and shown to possess the asymptotic distribution as if the commonality information were available. We also test the heterogeneity among a large number of sub-populations. All the above results require to regularize each sub-estimation as though it had the entire sample size. Our general theory applies to the divide-and-conquer approach that is often used to deal with massive homogeneous data. A technical by-product of this paper is the statistical inferences for the general kernel ridge regression. Thorough numerical results are also provided to back up our theory.

View on arXiv
Comments on this paper