ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.8359
24
13

Optimal Deployment of Geographically Distributed Workflow Engines on the Cloud

30 October 2014
Long Thai
Adam Barker
Blesson Varghese
Ozgur Akgun
Ian Miguel
ArXivPDFHTML
Abstract

When orchestrating Web service workflows, the geographical placement of the orchestration engine(s) can greatly affect workflow performance. Data may have to be transferred across long geographical distances, which in turn increases execution time and degrades the overall performance of a workflow. In this paper, we present a framework that, given a DAG-based workflow specification, computes the op- timal Amazon EC2 cloud regions to deploy the orchestration engines and execute a workflow. The framework incorporates a constraint model that solves the workflow deployment problem, which is generated using an automated constraint modelling system. The feasibility of the framework is evaluated by executing different sample workflows representative of sci- entific workloads. The experimental results indicate that the framework reduces the workflow execution time and provides a speed up of 1.3x-2.5x over centralised approaches.

View on arXiv
Comments on this paper