ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.4812
11
7

Inference and Mixture Modeling with the Elliptical Gamma Distribution

17 October 2014
Reshad Hosseini
S. Sra
Lucas Theis
Matthias Bethge
ArXivPDFHTML
Abstract

We study modeling and inference with the Elliptical Gamma Distribution (EGD). We consider maximum likelihood (ML) estimation for EGD scatter matrices, a task for which we develop new fixed-point algorithms. Our algorithms are efficient and converge to global optima despite nonconvexity. Moreover, they turn out to be much faster than both a well-known iterative algorithm of Kent & Tyler (1991) and sophisticated manifold optimization algorithms. Subsequently, we invoke our ML algorithms as subroutines for estimating parameters of a mixture of EGDs. We illustrate our methods by applying them to model natural image statistics---the proposed EGD mixture model yields the most parsimonious model among several competing approaches.

View on arXiv
Comments on this paper