ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.4231
32
20
v1v2 (latest)

Convergence properties of weighted particle islands with application to the double bootstrap algorithm

15 October 2014
P. Del Moral
Eric Moulines
Jimmy Olsson
Christelle Vergé
ArXiv (abs)PDFHTML
Abstract

Particle island models (Verg\'e et al., 2013) provide a means of parallelization of sequential Monte Carlo methods, and in this paper we present novel convergence results for algorithms of this sort. In particular we establish a central limit theorem - as the number of islands and the common size of the islands tend jointly to infinity - of the double bootstrap algorithm with possibly adaptive selection on the island level. For this purpose we introduce a notion of archipelagos of weighted islands and find conditions under which a set of convergence properties are preserved by different operations on such archipelagos. This theory allows arbitrary compositions of these operations to be straightforwardly analyzed, providing a very flexible framework covering the double bootstrap algorithm as a special case. Finally, we establish the long-term numerical stability of the double bootstrap algorithm by bounding its asymptotic variance under weak and easily checked assumptions satisfied for a wide range of models with possibly non-compact state space.

View on arXiv
Comments on this paper