ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.4176
25
32

Learning Distributed Word Representations for Natural Logic Reasoning

15 October 2014
Samuel R. Bowman
Christopher Potts
Christopher D. Manning
    NAI
ArXivPDFHTML
Abstract

Natural logic offers a powerful relational conception of meaning that is a natural counterpart to distributed semantic representations, which have proven valuable in a wide range of sophisticated language tasks. However, it remains an open question whether it is possible to train distributed representations to support the rich, diverse logical reasoning captured by natural logic. We address this question using two neural network-based models for learning embeddings: plain neural networks and neural tensor networks. Our experiments evaluate the models' ability to learn the basic algebra of natural logic relations from simulated data and from the WordNet noun graph. The overall positive results are promising for the future of learned distributed representations in the applied modeling of logical semantics.

View on arXiv
Comments on this paper