ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.5391
34
73

Fused Lasso Additive Model

18 September 2014
Ashley Petersen
Daniela Witten
N. Simon
ArXivPDFHTML
Abstract

We consider the problem of predicting an outcome variable using ppp covariates that are measured on nnn independent observations, in the setting in which flexible and interpretable fits are desirable. We propose the fused lasso additive model (FLAM), in which each additive function is estimated to be piecewise constant with a small number of adaptively-chosen knots. FLAM is the solution to a convex optimization problem, for which a simple algorithm with guaranteed convergence to the global optimum is provided. FLAM is shown to be consistent in high dimensions, and an unbiased estimator of its degrees of freedom is proposed. We evaluate the performance of FLAM in a simulation study and on two data sets.

View on arXiv
Comments on this paper