ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.1331
18
26

Finite mixture regression: A sparse variable selection by model selection for clustering

4 September 2014
Emilie Devijver
ArXivPDFHTML
Abstract

We consider a finite mixture of Gaussian regression model for high- dimensional data, where the number of covariates may be much larger than the sample size. We propose to estimate the unknown conditional mixture density by a maximum likelihood estimator, restricted on relevant variables selected by an 1-penalized maximum likelihood estimator. We get an oracle inequality satisfied by this estimator with a Jensen-Kullback-Leibler type loss. Our oracle inequality is deduced from a general model selection theorem for maximum likelihood estimators with a random model collection. We can derive the penalty shape of the criterion, which depends on the complexity of the random model collection.

View on arXiv
Comments on this paper