ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.4712
24
53

Bi-l0-l2-Norm Regularization for Blind Motion Deblurring

20 August 2014
W. Shao
Haibo Li
Michael Elad
ArXivPDFHTML
Abstract

In blind motion deblurring, leading methods today tend towards highly non-convex approximations of the l0-norm, especially in the image regularization term. In this paper, we propose a simple, effective and fast approach for the estimation of the motion blur-kernel, through a bi-l0-l2-norm regularization imposed on both the intermediate sharp image and the blur-kernel. Compared with existing methods, the proposed regularization is shown to be more effective and robust, leading to a more accurate motion blur-kernel and a better final restored image. A fast numerical scheme is deployed for alternatingly computing the sharp image and the blur-kernel, by coupling the operator splitting and augmented Lagrangian methods. Experimental results on both a benchmark image dataset and real-world motion blurred images show that the proposed approach is highly competitive with state-of-the- art methods in both deblurring effectiveness and computational efficiency.

View on arXiv
Comments on this paper