ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.3221
31
35

An adaptive composite quantile approach to dimension reduction

14 August 2014
Efang Kong
Yingcun Xia
ArXivPDFHTML
Abstract

Sufficient dimension reduction [J. Amer. Statist. Assoc. 86 (1991) 316-342] has long been a prominent issue in multivariate nonparametric regression analysis. To uncover the central dimension reduction space, we propose in this paper an adaptive composite quantile approach. Compared to existing methods, (1) it requires minimal assumptions and is capable of revealing all dimension reduction directions; (2) it is robust against outliers and (3) it is structure-adaptive, thus more efficient. Asymptotic results are proved and numerical examples are provided, including a real data analysis.

View on arXiv
Comments on this paper