ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.1156
26
88

Asymptotics in directed exponential random graph models with an increasing bi-degree sequence

6 August 2014
T. Yan
Chenlei Leng
Ji Zhu
ArXivPDFHTML
Abstract

Although asymptotic analyses of undirected network models based on degree sequences have started to appear in recent literature, it remains an open problem to study statistical properties of directed network models. In this paper, we provide for the first time a rigorous analysis of directed exponential random graph models using the in-degrees and out-degrees as sufficient statistics with binary as well as continuous weighted edges. We establish the uniform consistency and the asymptotic normality for the maximum likelihood estimate, when the number of parameters grows and only one realized observation of the graph is available. One key technique in the proofs is to approximate the inverse of the Fisher information matrix using a simple matrix with high accuracy. Numerical studies confirm our theoretical findings.

View on arXiv
Comments on this paper