ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.0777
64
161
v1v2v3 (latest)

A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes

4 August 2014
D. Cervone
Alexander DÁmour
L. Bornn
Kirk Goldsberry
ArXiv (abs)PDFHTML
Abstract

Basketball games evolve continuously in space and time as players constantly interact with their teammates, the opposing team, and the ball. However, current analyses of basketball outcomes rely on discretized summaries of the game that reduce such interactions to tallies of points, assists, and similar events. In this paper, we propose a framework for using optical player tracking data to estimate, in real time, the expected number of points obtained by the end of a possession. This quantity, called \textit{expected possession value} (EPV), derives from a stochastic process model for the evolution of a basketball possession; we model this process at multiple levels of resolution, differentiating between continuous, infinitesimal movements of players, and discrete events such as shot attempts and turnovers. Transition kernels are estimated using hierarchical spatiotemporal models that share information across players while remaining computationally tractable on very large data sets. In addition to estimating EPV, these models reveal novel insights on players' decision-making tendencies as a function of their spatial strategy.

View on arXiv
Comments on this paper