ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.6019
41
31

Experimental evaluation of two software countermeasures against fault attacks

22 July 2014
Nicolas Moro
K. Heydemann
Amine Dehbaoui
B. Robisson
Emmanuelle Encrenaz-Tiphène
ArXivPDFHTML
Abstract

Injection of transient faults can be used as a way to attack embedded systems. On embedded processors such as microcontrollers, several studies showed that such a transient fault injection with glitches or electromagnetic pulses could corrupt either the data loads from the memory or the assembly instructions executed by the circuit. Some countermeasure schemes which rely on temporal redundancy have been proposed to handle this issue. Among them, several schemes add this redundancy at assembly instruction level. In this paper, we perform a practical evaluation for two of those countermeasure schemes by using a pulsed electromagnetic fault injection process on a 32-bit microcontroller. We provide some necessary conditions for an efficient implementation of those countermeasure schemes in practice. We also evaluate their efficiency and highlight their limitations. To the best of our knowledge, no experimental evaluation of the security of such instruction-level countermeasure schemes has been published yet.

View on arXiv
Comments on this paper