ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.5459
51
128

A statistical test for Nested Sampling algorithms

21 July 2014
J. Buchner
ArXivPDFHTML
Abstract

Nested sampling is an iterative integration procedure that shrinks the prior volume towards higher likelihoods by removing a "live" point at a time. A replacement point is drawn uniformly from the prior above an ever-increasing likelihood threshold. Thus, the problem of drawing from a space above a certain likelihood value arises naturally in nested sampling, making algorithms that solve this problem a key ingredient to the nested sampling framework. If the drawn points are distributed uniformly, the removal of a point shrinks the volume in a well-understood way, and the integration of nested sampling is unbiased. In this work, I develop a statistical test to check whether this is the case. This "Shrinkage Test" is useful to verify nested sampling algorithms in a controlled environment. I apply the shrinkage test to a test-problem, and show that some existing algorithms fail to pass it due to over-optimisation. I then demonstrate that a simple algorithm can be constructed which is robust against this type of problem. This RADFRIENDS algorithm is, however, inefficient in comparison to MULTINEST.

View on arXiv
Comments on this paper