ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.5032
36
313

A Fully Distributed Reactive Power Optimization and Control Method for Active Distribution Networks

18 July 2014
Weiye Zheng
Wenchuan Wu
Boming Zhang
Hongbin Sun
Yebin Liu
ArXivPDFHTML
Abstract

This paper proposes a fully distributed reactive power optimization algorithm that can obtain the global optimum of non-convex problems for distribution networks without a central coordinator. Second-order cone (SOC) relaxation is used to achieve exact convexification. A fully distributed algorithm is then formulated corresponding to the given division of areas based on an alternating direction method of multipliers (ADMM) algorithm, which is greatly simplified by exploiting the structure of active distribution networks (ADNs). The problem is solved for each area with very little interchange of boundary information between neighboring areas. The standard ADMM algorithm is extended using a varying penalty parameter to improve convergence. The validity of the method is demonstrated via numerical simulations on an IEEE 33-node distribution network, a PG&E 69-node distribution system, and an extended 137-node system.

View on arXiv
Comments on this paper