ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.4211
128
18
v1v2v3 (latest)

A marginal sampler for σσσ-Stable Poisson-Kingman mixture models

16 July 2014
Maria Lomeli
Stefano Favaro
Yee Whye Teh
ArXiv (abs)PDFHTML
Abstract

We investigate the class of σ\sigmaσ-stable Poisson-Kingman random probability measures (RPMs) in the context of Bayesian nonparametric mixture modeling. This is a large class of discrete RPMs which encompasses most of the the popular discrete RPMs used in Bayesian nonparametrics, such as the Dirichlet process, Pitman-Yor process, the normalized inverse Gaussian process and the normalized generalized Gamma process. We show how certain sampling properties and marginal characterizations of σ\sigmaσ-stable Poisson-Kingman RPMs can be usefully exploited for devising a Markov chain Monte Carlo (MCMC) algorithm for making inference in Bayesian nonparametric mixture modeling. Specifically, we introduce a novel and efficient MCMC sampling scheme in an augmented space that has a fixed number of auxiliary variables per iteration. We apply our sampling scheme for a density estimation and clustering tasks with unidimensional and multidimensional datasets, and we compare it against competing sampling schemes.

View on arXiv
Comments on this paper