ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.5947
41
19

Committees of deep feedforward networks trained with few data

23 June 2014
Bogdan Miclut
Thomas Kaester
Thomas Martinetz
Erhardt Barth
    FedML
ArXiv (abs)PDFHTML
Abstract

Deep convolutional neural networks are known to give good results on image classification tasks. In this paper we present a method to improve the classification result by combining multiple such networks in a committee. We adopt the STL-10 dataset which has very few training examples and show that our method can achieve results that are better than the state of the art. The networks are trained layer-wise and no backpropagation is used. We also explore the effects of dataset augmentation by mirroring, rotation, and scaling.

View on arXiv
Comments on this paper