ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.5706
41
14

On the Maximum Entropy Property of the First-Order Stable Spline Kernel and its Implications

22 June 2014
Francesca P. Carli
ArXivPDFHTML
Abstract

A new nonparametric approach for system identification has been recently proposed where the impulse response is seen as the realization of a zero--mean Gaussian process whose covariance, the so--called stable spline kernel, guarantees that the impulse response is almost surely stable. Maximum entropy properties of the stable spline kernel have been pointed out in the literature. In this paper we provide an independent proof that relies on the theory of matrix extension problems in the graphical model literature and leads to a closed form expression for the inverse of the first order stable spline kernel as well as to a new factorization in the form UWU⊤UWU^\topUWU⊤ with UUU upper triangular and WWW diagonal. Interestingly, all first--order stable spline kernels share the same factor UUU and WWW admits a closed form representation in terms of the kernel hyperparameter, making the factorization computationally inexpensive. Maximum likelihood properties of the stable spline kernel are also highlighted. These results can be applied both to improve the stability and to reduce the computational complexity associated with the computation of stable spline estimators.

View on arXiv
Comments on this paper