ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.2080
43
270

Training Convolutional Networks with Noisy Labels

9 June 2014
Sainbayar Sukhbaatar
Joan Bruna
Manohar Paluri
Lubomir D. Bourdev
Rob Fergus
    NoLa
ArXivPDFHTML
Abstract

The availability of large labeled datasets has allowed Convolutional Network models to achieve impressive recognition results. However, in many settings manual annotation of the data is impractical; instead our data has noisy labels, i.e. there is some freely available label for each image which may or may not be accurate. In this paper, we explore the performance of discriminatively-trained Convnets when trained on such noisy data. We introduce an extra noise layer into the network which adapts the network outputs to match the noisy label distribution. The parameters of this noise layer can be estimated as part of the training process and involve simple modifications to current training infrastructures for deep networks. We demonstrate the approaches on several datasets, including large scale experiments on the ImageNet classification benchmark.

View on arXiv
Comments on this paper