ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.1222
36
97

Discovering Structure in High-Dimensional Data Through Correlation Explanation

4 June 2014
Greg Ver Steeg
Aram Galstyan
    CML
ArXivPDFHTML
Abstract

We introduce a method to learn a hierarchy of successively more abstract representations of complex data based on optimizing an information-theoretic objective. Intuitively, the optimization searches for a set of latent factors that best explain the correlations in the data as measured by multivariate mutual information. The method is unsupervised, requires no model assumptions, and scales linearly with the number of variables which makes it an attractive approach for very high dimensional systems. We demonstrate that Correlation Explanation (CorEx) automatically discovers meaningful structure for data from diverse sources including personality tests, DNA, and human language.

View on arXiv
Comments on this paper