ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.4930
46
136

Adapted Approach for Fruit Disease Identification using Images

20 May 2014
S. Dubey
A. S. Jalal
ArXivPDFHTML
Abstract

Diseases in fruit cause devastating problem in economic losses and production in agricultural industry worldwide. In this paper, an adaptive approach for the identification of fruit diseases is proposed and experimentally validated. The image processing based proposed approach is composed of the following main steps; in the first step K-Means clustering technique is used for the defect segmentation, in the second step some state of the art features are extracted from the segmented image, and finally images are classified into one of the classes by using a Multi-class Support Vector Machine. We have considered diseases of apple as a test case and evaluated our approach for three types of apple diseases namely apple scab, apple blotch and apple rot. Our experimental results express that the proposed solution can significantly support accurate detection and automatic identification of fruit diseases. The classification accuracy for the proposed solution is achieved up to 93%.

View on arXiv
Comments on this paper