ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.1605
38
191

DepecheMood: a Lexicon for Emotion Analysis from Crowd-Annotated News

7 May 2014
Jacopo Staiano
Marco Guerini
ArXivPDFHTML
Abstract

While many lexica annotated with words polarity are available for sentiment analysis, very few tackle the harder task of emotion analysis and are usually quite limited in coverage. In this paper, we present a novel approach for extracting - in a totally automated way - a high-coverage and high-precision lexicon of roughly 37 thousand terms annotated with emotion scores, called DepecheMood. Our approach exploits in an original way 'crowd-sourced' affective annotation implicitly provided by readers of news articles from rappler.com. By providing new state-of-the-art performances in unsupervised settings for regression and classification tasks, even using a na\"{\i}ve approach, our experiments show the beneficial impact of harvesting social media data for affective lexicon building.

View on arXiv
Comments on this paper