ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.8067
33
6

Robust Subspace Recovery via Bi-Sparsity Pursuit

31 March 2014
Xiao Bian
Hamid Krim
ArXivPDFHTML
Abstract

Successful applications of sparse models in computer vision and machine learning imply that in many real-world applications, high dimensional data is distributed in a union of low dimensional subspaces. Nevertheless, the underlying structure may be affected by sparse errors and/or outliers. In this paper, we propose a bi-sparse model as a framework to analyze this problem and provide a novel algorithm to recover the union of subspaces in presence of sparse corruptions. We further show the effectiveness of our method by experiments on both synthetic data and real-world vision data.

View on arXiv
Comments on this paper