ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.6397
53
57

Evaluating topic coherence measures

25 March 2014
Frank Rosner
Alexander Hinneburg
Michael Röder
Martin Nettling
A. Both
ArXiv (abs)PDFHTML
Abstract

Topic models extract representative word sets - called topics - from word counts in documents without requiring any semantic annotations. Topics are not guaranteed to be well interpretable, therefore, coherence measures have been proposed to distinguish between good and bad topics. Studies of topic coherence so far are limited to measures that score pairs of individual words. For the first time, we include coherence measures from scientific philosophy that score pairs of more complex word subsets and apply them to topic scoring.

View on arXiv
Comments on this paper