ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.3455
49
2

Asynchronous Convex Consensus in the Presence of Crash Faults

13 March 2014
Lewis Tseng
Nitin H. Vaidya
ArXivPDFHTML
Abstract

This paper defines a new consensus problem, convex consensus. Similar to vector consensus [13, 20, 19], the input at each process is a d-dimensional vector of reals (or, equivalently, a point in the d-dimensional Euclidean space). However, for convex consensus, the output at each process is a convex polytope contained within the convex hull of the inputs at the fault-free processes. We explore the convex consensus problem under crash faults with incorrect inputs, and present an asynchronous approximate convex consensus algorithm with optimal fault tolerance that reaches consensus on an optimal output polytope. Convex consensus can be used to solve other related problems. For instance, a solution for convex consensus trivially yields a solution for vector consensus. More importantly, convex consensus can potentially be used to solve other more interesting problems, such as convex function optimization [5, 4].

View on arXiv
Comments on this paper