ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.6550
26
72

Theory and methods of panel data models with interactive effects

26 February 2014
Jushan Bai
Kunpeng Li
ArXivPDFHTML
Abstract

This paper considers the maximum likelihood estimation of panel data models with interactive effects. Motivated by applications in economics and other social sciences, a notable feature of the model is that the explanatory variables are correlated with the unobserved effects. The usual within-group estimator is inconsistent. Existing methods for consistent estimation are either designed for panel data with short time periods or are less efficient. The maximum likelihood estimator has desirable properties and is easy to implement, as illustrated by the Monte Carlo simulations. This paper develops the inferential theory for the maximum likelihood estimator, including consistency, rate of convergence and the limiting distributions. We further extend the model to include time-invariant regressors and common regressors (cross-section invariant). The regression coefficients for the time-invariant regressors are time-varying, and the coefficients for the common regressors are cross-sectionally varying.

View on arXiv
Comments on this paper