Hospital readmission has become a critical metric of quality and cost of
healthcare. Medicare anticipates that nearly 17billionispaidoutonthe20ofpatientswhoarereadmittedwithin30daysofdischarge.Althoughseveralinterventionssuchastransitioncaremanagementanddischargereengineeringhavebeenpracticedinrecentyears,theeffectivenessandsustainabilitydependsonhowwelltheycanidentifyandtargetpatientsathighriskofrehospitalization.Basedontheliterature,mostcurrentriskpredictionmodelsfailtoreachanacceptableaccuracylevel;noneofthemconsiderspatient′shistoryofreadmissionandimpactsofpatientattributechangesovertime;andtheyoftendonotdiscriminatebetweenplannedandunnecessaryreadmissions.Tacklingsuchdrawbacks,wedevelopanewreadmissionmetricbasedonadministrativedatathatcanidentifypotentiallyavoidablereadmissionsfromallothertypesofreadmission.Wefurtherproposeatreebasedclassificationmethodtoestimatethepredictedprobabilityofreadmissionthatcandirectlyincorporatepatient′shistoryofreadmissionandriskfactorschangesovertime.Theproposedmethodsarevalidatedwith2011−12VeteransHealthAdministrationdatafrominpatientshospitalizedforheartfailure,acutemyocardialinfarction,pneumonia,orchronicobstructivepulmonarydiseaseintheStateofMichigan.Resultsshowsimproveddiscriminationpowercomparedtotheliterature(c−statistics>80