ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.7360
38
11

A Shannon Approach to Secure Multi-party Computations

28 January 2014
E. Lee
Emmanuel Abbe
ArXivPDFHTML
Abstract

In secure multi-party computations (SMC), parties wish to compute a function on their private data without revealing more information about their data than what the function reveals. In this paper, we investigate two Shannon-type questions on this problem. We first consider the traditional one-shot model for SMC which does not assume a probabilistic prior on the data. In this model, private communication and randomness are the key enablers to secure computing, and we investigate a notion of randomness cost and capacity. We then move to a probabilistic model for the data, and propose a Shannon model for discrete memoryless SMC. In this model, correlations among data are the key enablers for secure computing, and we investigate a notion of dependency which permits the secure computation of a function. While the models and questions are general, this paper focuses on summation functions, and relies on polar code constructions.

View on arXiv
Comments on this paper