ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.6628
50
15
v1v2 (latest)

BigOP: Generating Comprehensive Big Data Workloads as a Benchmarking Framework

26 January 2014
Yuqing Zhu
Jianfeng Zhan
Chuliang Weng
R. Nambiar
Jinchao Zhang
Xingzhen Chen
Lei Wang
ArXiv (abs)PDFHTML
Abstract

Big Data is considered proprietary asset of companies, organizations, and even nations. Turning big data into real treasure requires the support of big data systems. A variety of commercial and open source products have been unleashed for big data storage and processing. While big data users are facing the choice of which system best suits their needs, big data system developers are facing the question of how to evaluate their systems with regard to general big data processing needs. System benchmarking is the classic way of meeting the above demands. However, existent big data benchmarks either fail to represent the variety of big data processing requirements, or target only one specific platform, e.g. Hadoop. In this paper, with our industrial partners, we present BigOP, an end-to-end system benchmarking framework, featuring the abstraction of representative Operation sets, workload Patterns, and prescribed tests. BigOP is part of an open-source big data benchmarking project, BigDataBench (available at http://prof.ict.ac.cn/BigDataBench). BigOP's abstraction model not only guides the development of BigDataBench, but also enables automatic generation of tests with comprehensive workloads. We illustrate the feasibility of BigOP by implementing an automatic test generation tool and benchmarking against three widely used big data processing systems, i.e. Hadoop, Spark and MySQL Cluster. Three tests targeting three different application scenarios are prescribed. The tests involve relational data, text data and graph data, as well as all operations and workload patterns. We report results following test specifications.

View on arXiv
Comments on this paper